
Principles of Compiler Design (P) 2-1 Lexical Analysis

C h a p t e r

 Syllabus

 Lexical Analysis.

 Review of lexical analysis.

 Alphabet.

 Token.

 Lexical error.

 Block schematic of lexical analyzer.

 Automatic construction of lexical analyzer (LEX).

 LEX specification and features.

2.1 Role of the Lexical Analyzer :

The lexical analyzer is the first phase of a compiler.

Definition :

 Lexical analysis is the operation of reading the input program and breaking it into a

sequence of lexemes (tokens).

 The syntax analyzer uses these tokens to produce parse tree .

 Each token is a sequence of characters that represents a unit of information in the source

program.

 The interaction between lexical analyzer and parser is well defined. The parser calls a

single lexical analyzer subroutine every time as it needs a new token and then subroutine

(i.e. Lexical Analyzer) reads input characters until it can identify the next token and

returns it to the parser. This relationship is shown in Fig. 2.1.1.

Lexical Analysis

2

Principles of Compiler Design (P) 2-2 Lexical Analysis

Fig. 2.1.1

 In addition the lexical analyzer also performs certain secondary tasks like removing the

comments and white spaces (blank; tab and new line characters) from the source

program. It may also be given the responsibility of making a copy of the source program

with the error messages marked in it. Each error message may also be associated with a

line number.

 The analyzer may keep track of the line number by tracking the number of new line

characters seen while reading source program a character by character.

 There are several reasons of separating lexical analysis and parsing in analysis phase :

(1) Simpler design is perhaps the most important consideration. The separation of

lexical analysis from syntax analysis often allows us to simplify one or the other

of these phases.

(2) Compiler efficiency is improved if separate lexical analyzer allows us to construct

a specialized and potentially more efficient parsers.

(3) A large amount of time is spent in reading the source program and partitioning it

into tokens.

(3) Compiler portability is enhanced. Input alphabet peculiarities and other device

specific anomalies can be restricted to the lexical analyzer.

 Some terms with meaning that are used in lexical analyzer :

o Lexemes : Smallest logical units (words) of a program such as A, B, 10, if, + etc.

o Tokens : Classes of similar lexemes such as identifier, number, constant, operator

etc.

o Pattern : Formal or informal description of a token such as an identifier can have

at most 8 characters in which first character must be an alphabet and the successive

characters can be either digits or alphabets. Pattern is rule that describes a token.

o The pattern serves the two purposes :

(1) Matching each string which satisfies the description of the token specified

by it.

(2) Generating the lexical analyzer automatically by using this description.

Principles of Compiler Design (P) 2-3 Lexical Analysis

 For example, function definition in C

 Mult_three (float num1, float num2, float num3)

{

 float ans;

 ans = num1 num2 num3;

 return (ans);

}

 List of tokens in the function definition and their corresponding lexemes and pattern.

Token Lexeme Pattern

Keyword return, float return, float

Identifier num1, num2, num3, ans Letter followed by letter(s) and/or digit(s)

Delimiter (, ; ,), { , } (or; or) or { or }or ,

Operators =, + = or +

 Lexical analyzer must also pass additional information along with the token. These

items of information are called attributes for tokens.

 Generally a pattern matches more than one lexeme. Therefore the lexical analyzer must

provide additional information about the particular lexeme that matches the pattern.

2.2 Lexical Error :

 It is difficult to find out error at the lexical level because a lexical analyzer has a very

localized view of a source program.

 Example : If a string wilhe appear in a C program in the following context :

 Wilhe (x > y)

 It is not possible for the lexical analyzer to tell whether wilhe is an undertaken function

identifier or a misspelling keyword while. In this case lexical analyzer simply returns a

token identifier for wilhe.

 If program uses variable names just differing in one or two characters, there is

probability of occurrence of errors due to mistyping.

 Spelling errors situations – error recovery actions

(1) Extraneous character : Deleting an Extra character.

(2) A missing character : Inserting a missing character.

(3) A incorrect character : Replacing an incorrect character by a correct character.

(4) Two adjacent transposed characters : transposing two adjacent character.

 Suppose a situation arises in which lexical analyzer is unable to proceed because none of

the patterns for tokens matches a prefix of the remaining input. The simplest recovery

strategy is “panic mode” recovery.

 In situation of extraneous character the simpler strategy is to see whether a prefix of

Principles of Compiler Design (P) 2-4 Lexical Analysis

remaining input can be transferred into valid lexeme by just single error transformation

but these techniques are not always useful.

 Lexical analyzer in some compilers make a copy of the source program with the error

messages marked on it.

 It also takes care that there is no duplication of Error messages.

2.3 Block Schematic of Lexical Analyzer :

äää [University Exam : Dec. 2004 !!!]

 Lexical analyzer reads the source program character by character from the secondary

storage but it is costly. Therefore, a block of data is first read into a buffer and then

scanned by the lexical analyzer.

 It also reduces the amount of time in the lexical analyzer phase.

 Many source languages take time when the lexical analyzer needs to look ahead several

characters beyond the lexeme for a pattern before announcing a match.

 As large amount of time is consumed in moving characters, specialized buffering

techniques have been developed to reduce the amount of overhead required to process

us input character. Many buffering scheme can be used like one buffering scheme, two

buffer scheme etc. The one buffering scheme has some problems.

 Another technique is two buffer scheme. In two buffer scheme two buffers are scanned

alternately. Each buffer is N character long, where N is the number of character on the

block. It read N input character into each half of the buffer using one system read

command. When one reaches the end of the current buffer, the buffer is filled.

 To maintain input buffer, lexical analyzer uses two pointers : a lexeme beginning

pointer and a forward pointer to keep track of the portion of the input string scanned.

The string of characters between the two pointers is the current lexeme.

 Initially both pointers point to the beginning of the lexeme. Once the next lexeme is

determined, the forward pointer is set to the character at its right end. After the lexeme is

processed, both pointers are set to the character immediately after the lexeme. Using this

scheme, it can treat comments and white spaces as patterns that yield no token. This

operation is shown in Fig. 2.3.1.

E : = a + b; x = E; x +

 forward pointer

 Lexeme beginning

Fig. 2.3.1

 If the forward pointer is about to move fast the half way mark, the right half is filled

with N new input character. If the forward pointer is about to move fast the right end of

the buffer, the left half is filled with N new characters and the forward pointer wraps

Principles of Compiler Design (P) 2-5 Lexical Analysis

around to the beginning of the buffer.

Example 2.3.1 : Code of advance fp

 If (fp = = eof (buffer)) // end of first half

{

 reload buffer 2;

 fp : = fp + 1;

}

else if (fp = eof (buffer)) // end of second

{

 reload buffer;

 fp : = address of buffer /; // starting of buffer 1

}

else

{

 fp = fp + 1;

}

fp = forward pointer

 This buffering scheme shown in code of Ex. 2.3.1 works quite well most of the time, but

the amount of look ahead is limited and this limited look ahead may make it impossible

to recognize token in situation where the distance traveled by forward pointer is more

than the length of the buffer.

 For e.g.

DECLARE (ARG1, ARG2, … ARGn) in PL/I program

 Using code from Ex. 2.3.1 requires two tests for each advance of the forward pointer.

We can reduce the tests to one if we extend buffer half to hold a “sentinel” (eof)

character at the end shown in Ex. 2.3.2.

 Using sentinels, we can write the code that performs only one test to see whether

forward pointer points to the sentinel eof. If it reaches to end of buffer or end of the file

the code performs move tests. As shown in Ex. 2.3.2.

Example 2.3.2 : fp = fp + 1

if (fp = = eof)

{

 if (fp : : eob1)

 {

 reload buffer2;

 fp = fp + 1;

 }

 else if (fp = = eob2)

 {

 reload buffer1;

 fp : fp – 1 /;

 } *fp = forward pointer

 else

 terminate scanning

 }

Comment [a1]: Please change figure number

according to figure sequence of the this second

chapter

Comment [a2]: Please change figure number

according to figure sequence of the this second

chapter

Principles of Compiler Design (P) 2-6 Lexical Analysis

E : : a + b eof x = E; x + eof

 eb fp (sentinel)

Fig. 2.3.2

2.4 Token Specification :

2.4.1 Alphabet :

A string ever some alphabet :

 The term alphabet denotes any finite set of symbols.

e.g. {0, 1} are binary alphabet.

 Before declaration of token it checks for pattern match. Regular expressions are an

important notation for specifying pattern. They represent pattern of strings of character.

 A string like an alphabet is a finite sequence of legal symbols drawn from that alphabet

e.g. Compiler, Ulman etc. are strings over alphabet containing letter. We can define

length of string as a number of symbols in the string.

2.4.2 Regular Expression :

 Regular expressions represent patterns of strings of characters. A regular expression

may completely be defined by the set of strings. A regular expression over an alphabet is

defined by following rules.

1. (read as epsilon) is an regular expression.

2. If a symbol ‘u’ is in alphabet, then u is a regular expression.

 /* 1 and 2 defines Simple Regular Expressions as and u where as more complex

regular expressions are defined by applying unary or binary operations */

3. If r and s are regular expressions over the alphabet then following more complex

regular expressions can be obtained as

 (a) r/s or r+s is a regular expression. (Operation applied is Union)

 (b) rs is a regular expression. (Operation applied is Concatenation)

4. If r is regular expression then

 (a) r* is regular expression. (Operation applied is Kleen Closure)

 (b) (r) is regular expression.

 Every regular expressions denote, language like { }, {a} by Regular Expressions

and a (from above 1 and 2)

 Language L(r) U L(S) by Regular Expression r/s or r+s

 Language L(r)* by Regular Expression r*.

 Using definition of regular expression we may define a regular expression for identifier.

 letter (letter) digit)

Principles of Compiler Design (P) 2-7 Lexical Analysis

Regular Expression Language of the Regular Expressoin

 { }

A { a }

a+b {a,b}

Ab {ab}

A* {,a,aa,aaa,aaaa,…………………………}

2.4.3 Regular Definitions :

 For convenience, we can give names to regular expressions and define regular

expressions using these names as if they are symbols. If is as alphabet of basic symbol

then regular definition is a sequence of definition of the form

 d1 r1

 d2 r2

 :

 :

 dn rp

 When d1 is a distinct name and each r1 is regular expression over the symbols in

 U {d1, d2 … di – 1} that is basic symbols and d1 … di – 1 are defined names.

 e.g. : In defining identifier using regular expression

 letter A | B | … | Z | a | b | … | z |

 digit 0 | 1 | … 19

 id letter (letter/digit)*

2.4.4 Notation Shorthand :

 To construct regular expressions some notation shorthand as follows :

1. One or more instance : The unary postfix + operator

2. Zero or one instance : The unary posfix ? operator

3. Character classes : [A – Za – Z], [abc]

2.4.5 Construction of Lexical Analyzer :

1. Automatic generation of lexical analyzer :

 Lexical analyzers can be constructed in two ways.

 First method involves writing a program to do the lexical analysis.

 Another method uses automatic generation of lexical program which is faster.

 But with coding lexical analyzer is more efficient.

 For coding, lexical analyzer needs tokens and grammar using that tokens as

Example 2.4.1 :

 stmt if expr then stmt

 | if expr then stmt else stmt

 |

expr term relop term | term

Principles of Compiler Design (P) 2-8 Lexical Analysis

term id | num

if if

then then

else else

relop < | < = | = | < > | > | > =

id letter (letter/digit)*

Fig. 2.4.1

 Here the terminals are if, then, else

 Set of strings are defined by regular definition in Ex. 2.4.1.

 In programming tokens (which) are going to be declared matched by several different

regular expressions e.g. if, else, while either which may lead to ambiguity. To resolve

this, we must give preference to reserve word, if string is matched by reserve word by an

identifier.

 In addition to this lexemes are separated by delimiters like white space, task, newlines.

We have to define white space and if it match lexical analyzer will ignore that token and

not return is to parse which strip out the while spaces. We can define white space as

follows :

 delim blank | tab | newline

 ws delim + (this is rule for white spaces)

2.5 Transition Diagram :

 We want to construct a lexical analyzer that will identify the lexeme for the next tokens

in the input buffer and produce a token and its attributes value. Before doing that we

draw a translation diagram corresponding to each token as an intermediate step in the

construction of lexical analyzer.

 Translation diagram is a directed graph with nodes representing states and edges

representing translations on input symbols. A state is a representation of a portion of

input seen so far. For each transition diagram, there is a start state signifying anticipation

of the corresponding token and a final state signifying the end of the token.

 A transition diagram is useful in two ways. It serves as precise specification of token. It

also keep track of information about characters that are seen as forward pointer fp scans

the input. A state is a representation of the portion of input seen so far. Each edge

leaving a state S has label which indicates the input characters that can next appear after

the transition diagram has reached that state S. An edge labeled by character that is not

indicated by any of the other edges leaving from state S.

 On reaching a state S, we advance the forward pointer and read the next input character.

If this input character matches, the label of an edge from the current state, a transition is

made between these two states. If it does not matches, the label of any of the edges from

the current state, the transition diagram indicates a failure. Above transition diagram are

Comment [a3]: change this number accordingly

Principles of Compiler Design (P) 2-9 Lexical Analysis

determine Fig. 2.5.1 shows transition diagram for identifier.

 Fig. 2.5.1 (a) Comment [a4]: change this number accordingly

Principles of Compiler Design (P) 2-10 Lexical Analysis

Fig. 2.5.1 (b) : Regular definition for unsigned number and its transition diagram

2.6 Converting Transition Diagram into Code :

 The lexical analyzer coding required by following Fig. 2.6.1. with reference to Fig2.5.1

(a) & (b)

nexttoken ()

{

while(1)

{

while(1)

{ state =0; start= 0;

 switch (state)

 {

 Case ‘0’ :

 c = nextchar ();

 if (c = = ‘ ’ || c = = ‘\t’ || c = = ‘ \n’)

 {

 state = 0;

 lexeme begin ++;

 }

 else if letter(c)

 {

 state = 1;

 }

 else state = fail;

 {

 break;

 }

 Case 1 : c= nextchar ();

 If (letter (c) or digit (c)) Fig. 2.6.1 contd..

 { state = 1;

 }

 else

 { state = 2;

 }

 break;

Principles of Compiler Design (P) 2-11 Lexical Analysis

Case 2 : forwardpointer = forwardpointer – 1 / retract /

 return (identifier, input [lexembegin forward pointer])

 break;

Case 3 : / cases 3-10 here /

Case 11 :

 C = nextchar();

 if (c == ‘=’) state = 12;

 else if (c == ‘<’) state = 13;

 else if (c == ‘>’) state = 14;

 break;

Case 12 :

 return (rop, EQ);

 break;

Case 13 :

 C=nextchar ();

 if (c == ‘=’) state = 15;

 else if (c == ‘>’) state = 16;

 else state = 17;

 break;

Case 14 : c = nextchar ();

 if (c== ‘=’) state 19

 else state 18;

 break;

Case 15 : return (rop, LE);

 break;

Case 16 : forwardpointer = forwardpointer-1;

 return (rop, NE);

 break ;

Case 17 : forwardpointer = forwardpointer – 1

 return (rop, LT);

 break;

Case 18 : forwardpointer = forwardpointer – 1;

…….. return (rop, GT);

 break;

Fig. 2.6.1

 The lexical analyzer is represented by the function nexttoken().

 This function returns the next token and its attributes.

 It traverses transition diagrams successively starting with the diagram beginning in

state=0. The code reads a character from the input buffer and advances forward pointer

using a function nextchar() if there is edge leaving a state. The control is then

transferred to the code for the state pointed to by that edge i.e. next state.

 If current state indicates a token, the program returns that token. If it does not match

with next state, it invokes fail function before return.

fail()

Principles of Compiler Design (P) 2-12 Lexical Analysis

{

 forwardpointer = lexeme beginning;

 Switch (start)

 case 0 : start = 3;

 case 3 : start = 11;

 case 11 : recover error ();

 default : error message ();

}

 It backtracks to the beginning of the lexeme and tries next diagram specified if the

current transition diagram fails.

2.7 Automatic Generation of Lexical Analyzer :

 To generate a lexical analyzer two important things are needed. Firstly it will need a

precise specification of the tokens of the language. Secondly it will need a specification

of the action to be performed on identifying each token. For this operation several

tools have been built which uses regular expression as an output, it generates a lexical

analyzer. The particular tool of UNIX called Lex that has been widely used to specify

lexical analyzer for a variety of languages.

 Lex is generally used as shown in Fig. 2.7.1.

 First, a specification of a lexical analyzer is prepared. This specification used to write

program which is having extension .l (e.g. first.l, or ex.l). This program is written in lex

language and run through the Lex compiler to produce C code in lex.yy.c. The program

lex.yy.c basically consists of a transition diagram constructed from the regular

expressions of first .l or lex.l. (Finally lex.yy.c is run through the C compiler to produce

object program a.out, and lexical analyzer transforms an input streams into a sequence

of tokens.).

Comment [a5]: number

Principles of Compiler Design (P) 2-13 Lexical Analysis

Fig. 2.7.1

2.7.1 Lex Specifications :

 A lex program consists of three parts :

 {declaration}

 % %

 {translation rules}

 % %

 {programmer subroutines}

 The first section of declaration includes declaration of variable, constants and regular

definitions.

 Second section is for translation rules which consists of regular expression and action

with respect to it. If regular definition is declared in declaration section, it uses that for

regular expression. Every section end with % % symbol.

 The translation rules of a Lex program are statements of the form as follows:

 r {action;}

 Here, each r is a regular expression and action is a program fragment describing what

action to be taken when pattern matches.

 The actions are written in C language.

 The third section holds whatever program subroutines are needed by the actions. These

procedures can be compiled separately and loaded later with the lexical analyzer.

Principles of Compiler Design (P) 2-14 Lexical Analysis

2.7.2 Lex Pattern :

Lex pattern are standard UNIX regular expressions using standard symbol which check

the input stream (lexeme).

Standard regular

expression

Matches Example

c Single character not operator x

\c Any character following the \ less its

meaning and take literally

\

“S” String S literally “”

 Any single character except a newline (\n) a h

^ Beginning of line ^abc

$ End of line abc$

[S] Any character in S [abc], [A – Z]

[^S] Any character except from S [^abc]

r* Zero or more occurrence a*

r+ One or more occurrence a+

r? Zero or one r 0?

r {m, n} m to n occurrence of r a{1,5}

r1 r2 r1 then r2 ab

r1 | r2 r1 or r2 a : b

(r) r (a : b)

r1/r2 r1 when followed by r2 Abc/123

2.7.3 Lex Actions :

 Lex actions are C statements which are executed or actions are performed when regular

expression pattern matches with lexeme. An action may be of single line C statement or

multiple statement enclosed in {…} C brackets.

For example :

%%

“india”

{

 printf (“India is great”);

}

%%

 Here India is a string, if matches with lexeme action take place and print “India is

great”.

 Some important variables :

Principles of Compiler Design (P) 2-15 Lexical Analysis

yylval : Global variable which returns more information about lexeme to parser with the

value in lexeme.

yytext : The variable yytext carries point to the variable that we have been calling

lexeme beginning that is a pointer to the first character of the lexeme.

 In declarations surrounded by % {and %} are declarations for manifest constants. A

manifest constant is an identifier that is declared to represent a constant. Anything

appearing between these brackets is copied directly into the lexical analyzer lex.yy.c and

is not treated as part of the regular definitions or the translation rules.

 In third subroutine section we can write a user subroutines its option to user e.g. yy/ex is

a function automatically get called by compiler at compilation and execution of lex

program or we can call that function from the subroutine section.

2.7.4 Some Small Program Using Lex :

Program 1 : Remove white spaces from input stream :

 %%

 [\t];

 %%

 save by whitespace.l

 Syntax to execute the program is

 $ lex whitespace.l

 $ cc lex.yy.c –l l (–l l link lex library)

 $ a.out (provide input string to this file a.out)

 Input is :

 India is great.

Output is :

 Indiaisgreat.

Regular expression [\t] matches tabs and space. If it does not match, no action

performed and lexeme beginning pointer is incremented to read next lexeme.

Program 2 : Find and replace :

 %{ # include <stdio.h>

 # include <string.h>

 char find [10];

 char replace [10];

 File *fout;

 %}

 %%

 [a-z A-Z]([a-ZA-z][0-9])* {

 if (strcmp(yytext, find) = = 0)

 fprintf(fout, “%S”, replace)

 else

 fprintf(fout, “%S”, yytext)

 }

 %%

 main(int argc, char **argv)

Principles of Compiler Design (P) 2-16 Lexical Analysis

 {

 if(argc>1)

 {

 FILE *fin;

 fin = fopen(argv[1], “r”);

 if (!fin)

 printf (“ I/P File can not open”);

 printf(“Enter string to find”);

 scanf(“%S”, find);

 printf(“Enter string to replace by”);

 scanf(“%S”, replace);

 fout = fopen(“output.c”, “w”);

 if(!fout)

 printf(“Output file not created”);

 yyin = fin;

 yylex();

 }

 }

 File saved with the filename findreplace.l.

 The main function uses command line arguments, to read name of input file of run time

and save new replaced string output in “output.c”.

 yyin is special pointer variable, which points to input stream. Input is entered through

keyboard. That time it point to standard input output variable. In this program input read

from a separate file i.e. yyin = fin.

 In second section regular expression matches string and perform function [a – z]

[A – Za – Z.0-9]. It finds string and replaces it by required string.

lex.yy.c.

$ lex findreplace.l

$ cc lex.yy.c -ll

$ a.out input.c // input file as command line argument

Output :

Input : input.c //input file

Output : output.C // output file

Contents of Files

// input.c

We are going to Pune.

$ a.out input.c

Enter the string to find : Pune

Enter the string to replace by : Nasik

$ Vi out.c

We are going to Nasik.

Principles of Compiler Design (P) 2-17 Lexical Analysis

Program 3 : Change case using regular definition in declaration section and use that
declaration in defining RE.

%{ # include<stdio.h>

 # include<string.h>

 int buff = 0;

 int len = 0;

 int choice= 0;

 int i = 0;

 int case=0;

%}

LET [a-zA-Z]

DIG [0-9]

%%

{LET} ({LET}{DEG})* {

 switch(choice)

 {

 case 1 :

 len = strlen(yytext);

 for(i = 0; i<len; i++)

 {

 buff = yytext / [i];

 if(buff <= 122 && buff > = 97)

 else

 { buff = buff + 32;

 yytext[i] = buff;

 }

 }

 break;

 case 2 :

 for(i = 0; i < len; i++)

 {

 buff = yytext [i];

 if (buff < = 90 && buff > = 65)

 else

 { buff = buff – 32;

 yytext[i] = buff;

 }

 }

 break;

 case 3 :

 buff = yytext(0);

 if(buff <= 122 && buff > = 97)

 {

 buff = buff – 32;

 yytext[0] = buff

 }

Principles of Compiler Design (P) 2-18 Lexical Analysis

 break;

 }

 printf(“%S”, yytext);

%%

int main(int argc char **argv)

{

 FILE *file;

 if(argc > 1)

 { file = fopen(argv [1], “r”)

 printf(“1.Lower, 2.Upper, 3.Title”);

 scanf(“%d”, &case)

 yyin = file;

 yylex();

 }

 return(0);

 }

Program 4 : Lexical Analyzer

 %{ # include <stdio.h>

%}

LET [a-z A-Z]

DEG [0-9]

%%

[\t]+ ;

int/float/char/if/else/do/while/break/continue/double/signed/unsigned/long/for/switch {

 printf(“Keyword Found; %s”, yytext) }

main”(“”)”/exit/getch”(“”)” { printf(“Function is Found %s”, yytext) }

{LET}[{LET} {DEG}]* { printf(“Identifier found : %s”, yytext); }

%[sdf] { printf(“For mat symbol of identifier : %s yytext”); }

{DIG}+ { printf(“Constant is %s”, yytext); }

“/”. “//” { printf(“Commentt : %s”, yytext); }

“{” / “}” / “(” / “)” / “[” / “]” / “;” / “,” { printf(“Delimiters : %s”, yytext); }

“+” / “–” / “/” / “” { printf (“opertor : %s”, yytext); }

“ =” { printf(“Assignment operator : %s”, yytext); }

“<” / “>” / “< =” / “> =” / “= =” { printf (“Relational operator : % S”, yytext); }

%%

main(int argc, char argv)

 if(argc > 1)

{

 FILE *fp;

 fp = fopen (argv[1], “r”);

 if (!fp)

 { printf(“file error”); }

Principles of Compiler Design (P) 2-19 Lexical Analysis

 yyin = fp;

 yylex();

}

2.8 Finite Automata :

 In compilation of regular expression it constructs generalized transition diagram called

finite automaton. A finite automaton can be deterministic or non-deterministic.

 “Non-Deterministic Finite Automaton” have more than one transition out of state may

be possible or the same input symbol.

 Both finite automata accepts a sequence of input characters and performs a sequence of

action if the input string is a valid sentence in the language.

 Thus both can recognize exactly what regular expressions can denote. However, there is

a time space trade off; while deterministic finite automata can lead to faster recognizers

than non-deterministic automata.

 Regular Expressions can be converted in to DFA (Deterministic Finite Automata) and

NFA (Non-deterministic Finite Automata) by using algorithms .

 First let us see conversion of regular expression into a non-deterministic automation.

 For example, regular expression (a/b)*abb consisting of the set of all strings of a’s and

b’s ending in abb.

2.8.1 Non-deterministic Finite Automata :

 NFA consist of

 1. a set of states S

 2. a set of input symbols

 3. a transition function between states

 4. a state So that is distinguished as the starting state

 5. a subset of set of states F distinguished as accepting final states.

 An NFA can be represented diagrammatically by a labeled directed graph, called a

transition graph, in which the nodes are the state and the labeled edges represent the

transition function. This graph looks like a transition diagram, but the same character

can label two or more transitions out of one state. For (a/b)*abb.a transition graph is

shown in Fig. 2.8.1.

 Fig. 2.8.1

In above NFA, transition graph :

1. {0, 1, 2, 3} are set of states.

Principles of Compiler Design (P) 2-20 Lexical Analysis

2. {a, b} are input symbol.

3. This transition function can be implementing transition table that is a row for each state

and column for each input symbol and a transition table for the NFA of Fig. 2.8.1 is

shown in Fig. 2.8.2.

State a B

0 {0, 1} {0}

1 -- {2}

2 -- {3}

3 -- --

Fig. 2.8.2 : Input symbol

Principles of Compiler Design (P) 2-21 Lexical Analysis

 An NFA accepts an input string y if and only if there is some path in the transition graph

from start state to accepting state.

2.8.2 DFA (Deterministic Finite Automata) :

1. No state has an transitions.

2. For each state S and input symbol ‘a’ there is at most one edge labeled as ‘a’ coming out

of S.

 When DFA represented by transition diagram all outgoing edges are labeled with

an input character and no two edges leaving a given state have the same input

symbol.

 We can use transition table to represent transition diagram like NFA.

 Each entry in transition table has only single state. If the string is valid according to

language of finite automata there exists unique path from starting state to final state

of Automata for that string. Therefore it is very easy to decide whether given input

string is valid or not I in Deterministic Finite Automata than that of Non-

deterministic finite automata .

 In Fig. 2.8.3 we have seen NFA for (a/b)*abb, lets see a transition diagram of DFA

for the same regular expression.

Fig. 2.8.3

 In NFA, it has two transitions from state 0 on input ‘a’ that is it may go to state 0 to

1. But in DFA there is one state 1 which have transition on symbol ‘a’.

 NFA can have many more states than the equivalent DFA and it is difficult to

decide which path to follow in the NFA. Because there can be more than one output

state for same input character and current state which makes it difficult to do decide

which state should be selected as next state.

 In case of NFA to decide that a particular string is not accepted by NFA we have to

ensure that none of all possible paths from starting state can reach to final state of

NFA for the given string.

Comment [a6]: number

Principles of Compiler Design (P) 2-22 Lexical Analysis

 Thus to summarise

o NFAs are easy to obtain from RE

o NFAs are costlier programs than DFA (as NFA may have more states than

that of its equivalent minimized DFA)

o DFAs can easily and quickly decide whether given string is valid or not

according to language.

o Therefore RE are converted to NFA which are then converted to their

equivalent minimized DFA.

o Note: For every conversion an algorithm is used.

2.8.3 Construction of an NFA from Regular Expression :

 “Thompson’s construction” is an algorithm used to construct as NFA from a regular

expression. The algorithm uses the syntactic structure of the regular expression in to

guide the construction process. Here, important think is how to construct automata for

expression containing an alternation, concatenation or Kleene closure operator.

e.g. (1) Alternation (R/S)

 (2) Concatenation (R)S

 (3) Kleen’s closure R

 The construction of NFA using Thompson’s algorithm for above regular representations

are introduces at most two new states, so whatever NFA constructed for a regular

expression has at most twice as many states as there are symbols and operator is the

regular expression.

Thompson’s construction algorithm :

 Input : A regular expression R

 Output : An NFA accepting L(R)

 Method : First breaks R into its construction sub expressions. Then construct NFA for

each basic symbol r. By the syntactic structure of the regular expressions x, we combine

these NFA inductively and obtain the NFA for the entire expression.

 NFA has exactly one start state, no edge enter to it, and no edge leaves the final state.

 To construct NFA for each symbol rules :

 (1) For , construct the NFA :

Corel 9

 (2) For symbol ‘a’ of regular expression, the NFA :

Corel 10

 (3) For alternation (R)/(S), the NFA for regular expression R and S :

Corel 11

Comment [a7]: letters in circle should be

capitalA,B

Comment [a8]: Letters in circle should be capital

as A,B

Principles of Compiler Design (P) 2-23 Lexical Analysis

 Here there is transition on E from a to one start of R and S. And transition on E to

accepting state. This two state are not start or accepting states of N(R/S).

 (4) For (R) (S) Concatenation :

Corel 12

 Here R becomes the start state of composite NFA an accepting state of S becomes

accepting state of the NFA.

(2) For R*, Kleen’s closure :

Corel 13

 New start and accepting state a and b. In the NFA, we can travel from a to b directly

along with transition of , which representing R* zero occurrence of R, we can go a to b

with R number of times.

In constructing each state, note that we construct new state that has unique name. Also

some important properties like :

(1) No two states of any component NFA can have the same name.

(2) NFA for any R has exactly one start state and one accepting state.

(3) N(R) has at most twice as may states as the number of symbol and operation in R.

(4) Each state of the NFA for a regular expression R has either one outgoing transition on

symbol or at most two outgoing E transitions.

Principles of Compiler Design (P) 2-24 Lexical Analysis

Ex: R=(a/b)* can be converted into epsilon NFA as

Corel 14

2.8.4 Conversion of NFA to DFA :

(1) Find – Closure of each state of NFA. Now Epsilon transition is as

 A B

 means empty, thus machine enters state A, it also goes to state B on empty on null

input i.e. A and B can be considered as one state.

(2) Identify a group of NFA states to represent the initial state of the DFA. Let us call this

state S of DFA, which is the grouping of states {Si} of the NFA.

(3) Identify a group of NFA states; which can be reached from same Si along a transition

marked say ‘a’.

Principles of Compiler Design (P) 2-25 Lexical Analysis

(4) Repeat above steps until we reach the stage when no new states can be added to the

DFA.

 For above example.

(5) – closure (0) {1, 2, 4, 7} = A

 (A, a) = {3, 6, 7, 1, 2, 4} = B

 (A, b) = {5, 6, 7, 1, 2, 4} = C

 (B, a) = {3, 6, 7, 1, 2, 4} = B

 (B, b) = {5, 6, 7, 1, 2, 4} = C

 (C, a) = {3, 6, 7, 1, 2, 4} = B

 (C, b) = {5, 6, 7, 1, 2, 4} = C

(6) Starting state of NFA is state 0 and it’s -closure i.e. {1, 2, 4, 7} because on

 symbol from 0 next state transition next states are 2 and 4 and collectively its token state A of

DFA.

(7) From this state A on ‘a’ input symbol transition to state 3, now E closure of 3 is 6, 1, 2,

4, 7. Thus 1, 2, 4, 6, 7 are collectively new state B of DFA.

(8) Similarly {5, 6, 7, 1, 2, 4} from C of DFA of ‘A’ on after this B on ‘a’ and B on ‘b’, C

on ‘a’ and C on ‘b’ not generated new states i.e. DFA table is prepared is as follows :

State Input

a b

A B C

B B C

C B C

Next step is to minimize this DFA.

 Find the equivalent states and keep it is one group. The remove one of that and replace

over its equivalent state.

 With respect to example and its DFA table B, C are state which is equivalent i.e. its get

remove from table and replace by A as no state is remaining for transitions.

State Input

a b

A A A

Therefore DFA is as follows :

Corel 15

Example 2.8.1 : Consider following Epsilon NFA for Regular Expression (a/b)*a(a/b)

Principles of Compiler Design (P) 2-26 Lexical Analysis

 E closure on 0 = {1, 2, 3, 7} = A

 (A, a) = {4, 6, 7, 1, 2, 3, 8, 9, 11} (A, b) = {5, 6, 7, 1, 2, 3}

 = B = C

 (B, a) = {4, 6, 7, 1, 2, 3, 8, 9, 10, 11, 13} (B, b) = {5, 6, 7, 1, 2, 3, 12, 13}

 = D = E

 (C, a) = {4, 6, 7, 1, 2, 3, 8, 9, 11} (C, b) = {5, 6, 7, 8, 1, 2, 3, 9, 11}

 = B = F

 (D, a) = {4, 6, 7, 1, 2, 3, 8, 11, 9, 10, 13} (D, b) = {5, 6, 7, 1, 2, 3, 12, 13}

 = D = E

 (E, a) = {4, 6, 7, 9, 8, 1, 2, 3, 11} (E, b) = {5, 6, 7, 1, 2, 3}

 = B = C

 (F, a) = {4, 5, 7, 1, 2, 3, 8, 9, 11, 10, 13} (F, b) = {5, 6, 7, 1, 2, 3, 12, 13}

 = D = E

 a b

A B C (AE) (BD) (C) (F)

(A) (B) (C) (F) B D E

C B F

D D E

E B C After reducing

F D E

 a b

A F A

C F F

F F A

Principles of Compiler Design (P) 2-27 Lexical Analysis

Examples :

(3) (a/b)* abb (a/b)*

(4) (a*/b*)*

(5) (a*ba/aba*)

(6) ((a+(b/c)*)*+(a+b*)*)*

2.9 Role of the Finite Automata in the Compiler :

Consider example given for the regular expression of identifier.

 Now regular expressions are used as token describer in lexical Analyzer compiler.

 Lexical Analyzer has to perform major task of Token Identification from the input

source program. To identify token lexical analyzer needs token identifier.

 Now as regular expression can be converted into finite automata by using algorithm we

can obtain finite automata working as token identifier from regular expression which is

token describer.

 Thus finite automata play an important role in lexical analyzer.

 The regular expression can be converted into e-NFA which can be converted into DFA

which can be again minimized. This minimized DFA can be used as Token Recognizer

in Lexical analyzer.

 Finite Automata is minimized to produce shorter program

 Illustrate RE and FA for identifiers.

 Review Questions

Q. 1 What are the advantages of separating lexical analysis form syntax analysis ?

Q. 2 Write a short note on LEX.

Q. 3 Assuming suitable data structure for representing finite automation, write an algorithm

(in pseudo ‘C’) for converting a NFA to its equivalent DFA.

Q. 4 State the importance of lookahead in lexical analysis.

Q. 5 Explain the importance of ordering the lexical rules.

Q. 6 In Lex notation, give regular expression to recognize ‘C’ comments.

2.10 University Questions and Answers :

May 2004 – Total Marks 8

Q. 1 Discuss the role of finite automata in compiler. (Section 2.9) (8 Marks)

 Dec 2004 – Total Marks 16

Q. 2 Write a Lex rule for “ An identifier that starts and ends with digit and maximum length

of 20 characters. (Section 2.7.1) (6 Marks)

Principles of Compiler Design (P) 2-28 Lexical Analysis

Q. 3 State what strategy Lex should adopt if keywords are not reserved words.

(Section 2.7.2) (4 Marks)

Q. 4 Write a short note on input buffer with lexical anlyzer. (Section 2.3) (6 Marks)

