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2.1 Role of the Lexical Analyzer : 

The lexical analyzer is the first phase of a compiler. 

Definition : 

 Lexical analysis is the operation of reading the input program and breaking it into a 

sequence of lexemes (tokens).  

 The syntax analyzer uses these tokens to produce parse tree .  

 Each token is a sequence of characters that represents a unit of information in the source 

program. 

 The interaction between lexical analyzer and parser is well defined. The parser calls a 

single lexical analyzer subroutine every time as it needs a new token and then subroutine 

(i.e. Lexical Analyzer) reads input characters until it can identify the next token and 

returns it to the parser. This relationship is shown in Fig. 2.1.1. 
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Fig. 2.1.1 

 In addition the lexical analyzer also performs certain secondary tasks like removing the 

comments and white spaces (blank; tab and new line characters) from the source 

program. It may also be given the responsibility of making a copy of the source program 

with the error messages marked in it. Each error message may also be associated with a 

line number.  

 The analyzer may keep track of the line number by tracking the number of new line 

characters seen while reading source program a character by character. 

 There are several reasons of separating lexical analysis and parsing in analysis phase : 

(1) Simpler design is perhaps the most important consideration. The separation of 

lexical analysis from syntax analysis often allows us to simplify one or the other 

of these phases. 

(2) Compiler efficiency is improved if separate lexical analyzer allows us to construct 

a specialized and potentially more efficient parsers. 

(3)  A large amount of time is spent in reading the source program and partitioning it 

into tokens. 

(3) Compiler portability is enhanced. Input alphabet peculiarities and other device 

specific anomalies can be restricted to the lexical analyzer. 

 Some terms with meaning that are used in lexical analyzer : 

o Lexemes : Smallest logical units (words) of a program such as A, B, 10, if, + etc. 

o Tokens : Classes of similar lexemes such as identifier, number, constant, operator 

etc. 

o Pattern :  Formal or informal description of a token such as an identifier can have  

at most 8 characters in which first character must be an alphabet and the successive 

characters can be either digits or alphabets. Pattern is rule that describes a token. 

o The pattern serves the two purposes : 

(1) Matching each string which satisfies the description of the token specified 

by it. 

(2) Generating the lexical analyzer automatically by using  this description.  
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 For example, function definition in C  

 Mult_three (float num1, float num2, float num3) 

{ 

 float ans; 

 ans = num1  num2  num3; 

 return (ans); 

} 

 List of tokens in the function definition and their corresponding lexemes and pattern. 

Token Lexeme Pattern 

Keyword return, float return, float 

Identifier num1, num2, num3, ans Letter followed by letter(s) and/or digit(s) 

Delimiter (, ; ,), { , }  (or; or) or { or }or , 

Operators =, + = or + 

 Lexical analyzer must also pass additional information along with the token. These 

items of information are called attributes for tokens.  

 Generally a pattern matches more than one lexeme. Therefore the lexical analyzer must 

provide additional information about the particular lexeme that matches the pattern. 

2.2 Lexical Error : 

 It is difficult to find out error at the lexical level because a lexical analyzer has a very 

localized view of a source program. 

 Example : If a string wilhe appear in a C program in the following context : 

  Wilhe (x > y) 

 It is not possible for the lexical analyzer to tell whether wilhe is an undertaken function 

identifier or a misspelling keyword while. In this case lexical analyzer simply returns a 

token identifier for wilhe. 

 If program uses variable names just differing in one or two characters, there is 

probability of occurrence of errors due to mistyping. 

 Spelling errors situations – error recovery actions 

(1) Extraneous character  : Deleting an Extra character. 

(2) A missing character : Inserting a missing character. 

(3) A incorrect character : Replacing an incorrect character by a correct character. 

(4) Two adjacent transposed characters : transposing two adjacent character. 

 Suppose a situation arises in which lexical analyzer is unable to proceed because none of 

the patterns for tokens matches a prefix of the remaining input. The simplest recovery 

strategy is “panic mode” recovery. 

 In situation of extraneous character the simpler strategy is to see whether a prefix of 
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remaining input can be transferred into valid lexeme by just single error transformation 

but these techniques are not always useful. 

 Lexical analyzer in some compilers make a copy of the source program with the error 

messages marked on it. 

 It also takes care that there is no duplication of Error messages. 

2.3 Block Schematic of Lexical Analyzer :  

äää [ University Exam : Dec. 2004 !!! ] 

 Lexical analyzer reads the source program character by character from the secondary 

storage but it is costly. Therefore, a block of data is first read into a buffer and then 

scanned by the lexical analyzer.  

 It also reduces the amount of time in the lexical analyzer phase. 

 Many source languages take time when the lexical analyzer needs to look ahead several 

characters beyond the lexeme for a pattern before announcing a match. 

 As large amount of time is consumed in moving characters, specialized buffering 

techniques have been developed to reduce the amount of overhead required to process 

us input character. Many buffering scheme can be used like one buffering scheme, two 

buffer scheme etc. The one buffering scheme has some problems. 

 Another technique is two buffer scheme. In two buffer scheme two buffers are scanned 

alternately. Each buffer is N character long, where N is the number of character on the 

block. It read N input character into each half of the buffer using one system read 

command. When one reaches the end of the current buffer, the buffer is filled. 

 To maintain input buffer, lexical analyzer uses two pointers : a lexeme beginning 

pointer and a forward pointer to keep track of the portion of the input string scanned. 

The string of characters between the two pointers is the current lexeme.  

 Initially both pointers point to the beginning of the lexeme. Once the next lexeme is 

determined, the forward pointer is set to the character at its right end. After the lexeme is 

processed, both pointers are set to the character immediately after the lexeme. Using this 

scheme, it can treat comments and white spaces as patterns that yield no token. This 

operation is shown in Fig. 2.3.1. 

E : = a + b; x = E; x + 

           forward pointer 

    Lexeme beginning  

Fig. 2.3.1 

 If the forward pointer is about to move fast the half way mark, the right half is filled 

with N new input character. If the forward pointer is about to move fast the right end of 

the buffer, the left half is filled with N new characters and the forward pointer wraps 
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around to the beginning of the buffer. 

Example 2.3.1 : Code of advance fp 

     If (fp = = eof (buffer)) // end of first half 

{ 

 reload buffer 2; 

 fp : = fp + 1; 

} 

else if (fp = eof (buffer)) // end of second 

{ 

 reload buffer; 

 fp : = address of buffer /; // starting of buffer 1 

} 

else 

{ 

 fp = fp + 1; 

} 

fp = forward pointer 

 This buffering scheme shown in code of Ex. 2.3.1 works quite well most of the time, but 

the amount of look ahead is limited and this limited look ahead may make it impossible 

to recognize token in situation where the distance traveled by forward pointer is more 

than the length of the buffer. 

 For e.g. 

DECLARE (ARG1, ARG2, … ARGn) in PL/I program 

 Using code from Ex. 2.3.1 requires two tests for each advance of the forward pointer. 

We can reduce the tests to one if we extend buffer half to hold a “sentinel” (eof) 

character at the end shown in Ex. 2.3.2.   

 Using sentinels, we can write the code that performs only one test to see whether 

forward pointer  points to the sentinel eof. If it reaches to end of buffer or end of the file 

the code performs move tests. As shown in Ex. 2.3.2. 

Example 2.3.2 : fp = fp + 1 

if (fp = = eof) 

{ 

 if (fp : : eob1) 

 { 

  reload buffer2; 

  fp = fp + 1; 

 } 

 else if (fp = = eob2) 

 { 

  reload buffer1; 

  fp : fp – 1 /; 

 }    *fp = forward pointer 

 else 

 terminate scanning 

    } 

Comment [a1]:  Please change figure number 

according to figure sequence of the this second 

chapter 

 

Comment [a2]: Please change figure number 

according to figure sequence of the this second 

chapter 
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E : : a + b eof x = E; x +       eof 

            

 eb   fp        (sentinel) 

Fig.  2.3.2 

2.4 Token Specification : 

2.4.1 Alphabet : 

A string ever some alphabet : 

 The term alphabet denotes any finite set of symbols. 

e.g. {0, 1} are binary alphabet. 

 Before declaration of token it checks for pattern match. Regular expressions are an 

important notation for specifying pattern. They represent pattern of strings of character. 

 A string like an alphabet is a finite sequence of legal symbols drawn from that alphabet 

e.g. Compiler, Ulman etc. are strings over alphabet containing letter. We can define 

length of string as a number of symbols in the string. 

2.4.2 Regular Expression : 

 Regular expressions represent patterns of strings of characters. A regular expression 

may completely be defined by the set of strings. A regular expression over an alphabet is 

defined by following rules. 

1.   ( read as epsilon) is an regular expression. 

2. If a symbol ‘u’ is in alphabet, then u is a regular expression. 

 /* 1 and 2 defines Simple Regular Expressions as   and u where as more complex 

regular expressions are defined by applying unary or binary operations */ 

3. If r and s are regular expressions over the alphabet then following more complex 

regular expressions can be obtained as 

 (a) r/s or r+s is a regular expression. ( Operation applied is Union) 

 (b) rs is a regular expression. ( Operation applied is Concatenation) 

4. If r is regular expression then 

 (a) r* is regular expression. ( Operation applied is Kleen Closure) 

 (b) (r) is regular expression. 

 Every regular expressions denote, language like { }, {a} by Regular Expressions    

and a ( from above 1 and 2) 

 Language L(r) U L(S) by Regular Expression  r/s or r+s 

 Language L(r)* by Regular Expression r*. 

 Using definition of regular expression we may define a regular expression for identifier. 

  letter (letter) digit)  
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Regular Expression Language of the Regular Expressoin 

 {  } 

A { a } 

a+b {a,b} 

Ab {ab} 

A* {,a,aa,aaa,aaaa,…………………………} 

2.4.3 Regular Definitions : 

 For convenience, we can give names to regular expressions and define regular 

expressions using these names as if they are symbols. If  is as alphabet of basic symbol 

then regular definition is a sequence of definition of the form 

   d1  r1 

   d2  r2 

    : 

    : 

   dn  rp 

 When d1 is a distinct name and each r1 is regular expression over the symbols in  

  U {d1, d2 … di – 1} that  is basic symbols and d1 … di – 1 are defined names. 

 e.g. : In defining identifier using regular expression 

   letter    A | B | … | Z | a | b | … | z | 

   digit   0 | 1 | … 19 

   id  letter (letter/digit)* 

2.4.4 Notation Shorthand : 

 To construct regular expressions some notation shorthand as follows : 

1. One or more instance : The unary postfix + operator 

2. Zero or one instance : The unary posfix ? operator 

3. Character classes : [A – Za – Z], [abc] 

2.4.5 Construction of Lexical Analyzer : 

1. Automatic generation of lexical analyzer : 

 Lexical analyzers can be constructed in two ways. 

 First method involves writing a program to do the lexical analysis.  

 Another method uses automatic generation of lexical program which is faster.  

 But with coding lexical analyzer is more efficient. 

 For coding, lexical analyzer needs tokens and grammar using that tokens as 

Example 2.4.1 : 

   stmt   if expr then stmt 

  | if expr then stmt else stmt 

  |  

expr  term relop term | term  
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term   id | num 

if   if 

then  then 

else  else 

relop  < | < = | = | < > | > | > = 

id  letter (letter/digit)* 

Fig. 2.4.1 

 Here the terminals are if, then, else  

 Set of strings are defined by regular definition in Ex. 2.4.1.  

 In programming tokens (which) are going to be declared matched by several different 

regular expressions e.g. if, else, while either which may lead to ambiguity. To resolve 

this, we must give preference to reserve word, if string is matched by reserve word by an 

identifier. 

 In addition to this lexemes are separated by delimiters like white space, task, newlines. 

We have to define white space and if it match lexical analyzer will ignore that token and 

not return is to parse which strip out the while spaces. We can define white space as 

follows : 

  delim  blank | tab | newline  

   ws  delim +   ( this is rule for white spaces) 

2.5 Transition Diagram : 

 We want to construct a lexical analyzer that will identify the lexeme for the next tokens 

in the input buffer and produce a token and its attributes value. Before doing that we 

draw a translation diagram corresponding to each token as an intermediate step in the 

construction of lexical analyzer. 

 Translation diagram is a directed graph with nodes representing states and edges 

representing translations on input symbols. A state is a representation of a portion of 

input seen so far. For each transition diagram, there is a start state signifying anticipation 

of the corresponding token and a final state signifying the end of the token. 

 A transition diagram is useful in two ways. It serves as precise specification of token. It 

also keep track of information about characters that are seen as forward pointer fp scans 

the input. A state is a representation of the portion of input seen so far. Each edge 

leaving a state S has label which indicates the input characters that can next appear after 

the transition diagram has reached that state S. An edge labeled by character that is not 

indicated by any of the other edges leaving from state S. 

  On reaching a state S, we advance the forward pointer and read the next input character. 

If this input character matches, the label of an edge from the current state, a transition is 

made between these two states. If it does not matches, the label of any of the edges from 

the current state, the transition diagram indicates a failure. Above transition diagram are 

Comment [a3]: change this number accordingly 
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determine Fig. 2.5.1 shows transition diagram for identifier. 

 

 Fig. 2.5.1 (a)   Comment [a4]: change this number accordingly 
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Fig. 2.5.1 (b) : Regular definition for unsigned number and its transition diagram 

2.6 Converting Transition Diagram into Code : 

 The lexical analyzer coding required by following Fig. 2.6.1. with reference to Fig2.5.1 

(a) & (b)  

nexttoken ( ) 

{ 

while(1) 

{ 

while(1) 

{ state =0; start= 0; 

  switch (state) 

  { 

  Case ‘0’ : 

   c = nextchar ( ); 

   if (c = = ‘  ’ || c = = ‘\t’ || c = =  ‘ \n’) 

   { 

    state = 0; 

    lexeme begin ++; 

   } 

   else if letter(c) 

   { 

    state = 1; 

   } 

   else state = fail; 

   { 

    break; 

   } 

 Case 1 :  c= nextchar ( ); 

   If (letter (c) or digit (c))  Fig.  2.6.1 contd.. 

    { state = 1; 

    } 

    else 

    { state = 2; 

    } 

    break; 
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Case 2 :  forwardpointer = forwardpointer – 1 / retract / 

   return ( identifier, input [lexembegin forward pointer]) 

   break; 

Case 3 : / cases 3-10 here / 

Case 11 :  

   C = nextchar( ); 

   if (c == ‘=’) state = 12; 

   else if (c == ‘<’) state = 13; 

   else if (c == ‘>’) state = 14; 

   break; 

Case 12 :  

   return (rop, EQ); 

   break; 

Case 13 :  

   C=nextchar ( ); 

    if (c == ‘=’) state = 15; 

   else if (c == ‘>’) state = 16; 

   else state = 17; 

   break; 

     

Case 14 : c = nextchar ( );  

   if (c== ‘=’) state 19 

   else state 18; 

   break; 

Case 15 : return (rop, LE); 

   break; 

    

Case 16 :  forwardpointer = forwardpointer-1; 

     return (rop, NE); 

    break ; 

Case 17 :  forwardpointer = forwardpointer – 1 

     return (rop, LT); 

     break; 

Case 18 : forwardpointer = forwardpointer – 1; 

……..  return (rop, GT); 

   break; 

Fig.  2.6.1 

 The lexical analyzer is represented by the function nexttoken(). 

 This function returns the next token and its attributes.  

 It traverses transition diagrams successively starting with the diagram beginning in 

state=0. The code reads a character from the input buffer and advances forward pointer 

using a function nextchar( ) if there is edge leaving a state. The control is then 

transferred to the code for the state pointed to by that edge i.e. next state. 

 If current state indicates a token, the program returns that token. If it does not match 

with next state, it invokes fail function before return. 

fail( ) 
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{ 

 forwardpointer = lexeme beginning; 

 Switch (start) 

 case 0 : start = 3; 

 case 3 : start = 11; 

 case 11 : recover error ( ); 

 default : error message ( ); 

} 

 It backtracks to the beginning of the lexeme and tries next diagram specified if the 

current transition diagram fails. 

2.7 Automatic Generation of Lexical Analyzer : 

 To generate a lexical analyzer  two important things are needed. Firstly it will need a 

precise specification of the tokens of the language. Secondly it will need a specification 

of the action to be performed on identifying each token. For this operation several 

tools have been built which uses regular expression as an output, it generates a lexical 

analyzer. The particular tool of UNIX called Lex that has been widely used to specify 

lexical analyzer for a variety of languages. 

 Lex is generally used as shown in Fig. 2.7.1.  

 First, a specification of a lexical analyzer is prepared. This specification used to write 

program which is having extension .l (e.g. first.l, or ex.l). This program is written in lex 

language and run through the Lex compiler to produce C code in lex.yy.c. The program 

lex.yy.c basically consists of a transition diagram constructed from the regular 

expressions of first .l or lex.l. (Finally lex.yy.c is run through the C compiler to produce 

object program a.out, and lexical analyzer transforms an input streams into a sequence 

of tokens.). 

Comment [a5]: number 
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Fig. 2.7.1 

2.7.1 Lex Specifications : 

 A lex program consists of three parts : 

  {declaration} 

  % % 

  {translation rules} 

  % % 

  {programmer subroutines} 

 The first section of declaration includes declaration of variable, constants and regular 

definitions.  

 Second section is for translation rules which consists of regular expression and action 

with respect to it. If regular definition is declared in declaration section, it uses that for 

regular expression. Every section end with % % symbol. 

 The translation rules of a Lex program are statements of the form as follows: 

    r {action;} 

 Here, each r is a regular expression and action is a program fragment describing what 

action to be taken when pattern matches. 

 The actions are written in C language. 

 The third section holds whatever program subroutines are needed by the actions. These 

procedures can be compiled separately and loaded later with the lexical analyzer. 
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2.7.2 Lex Pattern : 

Lex pattern are standard UNIX regular expressions using standard symbol which check 

the input stream (lexeme). 

Standard regular 

expression 

Matches Example 

c Single character not operator x 

\c Any character following the \ less its 

meaning and take literally 

\  

“S” String S literally “” 

 Any single character except a newline (\n) a  h 

^ Beginning of line ^abc 

$ End of line abc$ 

[S] Any character in S [abc], [A – Z] 

[^S] Any character except from S [^abc] 

r* Zero or more occurrence a* 

r+ One or more occurrence a+ 

r? Zero or one r 0? 

r {m, n} m to n occurrence of r a{1,5} 

r1 r2 r1 then r2 ab 

r1 | r2 r1 or r2 a : b 

(r) r (a : b) 

r1/r2 r1 when followed by r2 Abc/123 

2.7.3 Lex Actions : 

 Lex actions are C statements which are executed or actions are performed when regular 

expression pattern matches with lexeme. An action may be of single line C statement or 

multiple statement enclosed in {…} C brackets. 

For example : 

%% 

“india” 

{ 

 printf (“India is great”); 

} 

%% 

 Here India is a string, if matches with lexeme action take place and print “India is 

great”. 

 Some important variables : 
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yylval : Global variable which returns more information about lexeme to parser with the 

value in lexeme. 

yytext : The variable yytext carries point to the variable that we have been calling 

lexeme beginning that is a pointer to the first character of the lexeme. 

 In declarations surrounded by % {and %} are declarations for manifest constants. A 

manifest constant is an identifier that is declared to represent a constant. Anything 

appearing between these brackets is copied directly into the lexical analyzer lex.yy.c and 

is not treated as part of the regular definitions or the translation rules. 

 In third subroutine section we can write a user subroutines its option to user e.g. yy/ex is 

a function automatically get called by compiler at compilation and execution of lex 

program or we can call that function from the subroutine section. 

2.7.4 Some Small Program Using Lex : 

Program 1 : Remove white spaces from input stream : 

 %% 

 [ \t]; 

 %% 

 save by whitespace.l 

 Syntax to execute the program is 

 $ lex whitespace.l   

 $ cc lex.yy.c –l l    (–l l  link lex library) 

 $ a.out      (provide input string to this file a.out) 

 Input is : 

 India is great. 

Output is : 

 Indiaisgreat. 

Regular expression [ \t] matches tabs and space. If it does not match, no action 

performed and lexeme beginning pointer is incremented to read next lexeme. 

Program 2 : Find and replace : 

 %{ # include <stdio.h> 

   # include <string.h> 

   char find [10]; 

   char replace [10]; 

   File *fout; 

 %} 

 %% 

 [a-z A-Z]([a-ZA-z][0-9])*   { 

   if (strcmp(yytext, find) = = 0) 

    fprintf(fout, “%S”, replace) 

   else 

    fprintf(fout, “%S”, yytext) 

  } 

 %% 

  main(int argc, char **argv) 
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 { 

   if(argc>1) 

   { 

    FILE *fin; 

    fin = fopen(argv[1], “r”); 

    if (!fin) 

     printf (“ I/P File can not open”); 

    printf(“Enter string to find”); 

    scanf(“%S”, find); 

    printf(“Enter string to replace by”); 

    scanf(“%S”, replace); 

 

    fout = fopen(“output.c”, “w”); 

    if(!fout) 

     printf(“Output file not created”); 

    yyin = fin; 

    yylex( ); 

   } 

 } 

 File saved with the filename findreplace.l. 

 The main function uses command line arguments, to read name of input file of run time 

and save new replaced string output in “output.c”. 

 yyin is special pointer variable, which points to input stream. Input is entered through 

keyboard. That time it point to standard input output variable. In this program input read 

from a separate file i.e. yyin = fin. 

 In second section regular expression matches string and perform function [a – z] 

[A – Za – Z.0-9]. It finds string and replaces it by required string. 

lex.yy.c. 

 

$ lex findreplace.l 

$ cc lex.yy.c -ll 

$ a.out input.c   // input file as command line argument 

 

Output : 

Input   :  input.c  //input file  

Output : output.C  // output file 

Contents of Files 

// input.c 

We are going to Pune. 

$ a.out input.c 

Enter the string to find : Pune 

Enter the string to replace by : Nasik 

 

$ Vi out.c 

We are going to Nasik. 
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Program 3 : Change case using regular definition in declaration section and use that 
declaration in defining RE. 

%{ # include<stdio.h> 

 # include<string.h> 

  

 int buff = 0; 

 int len = 0; 

 int choice= 0; 

 int i = 0; 

 int case=0; 

%} 

LET [a-zA-Z] 

DIG [0-9] 

%% 

{LET} ({LET}{DEG})*  { 

    switch(choice) 

    { 

    case 1 : 

     len = strlen(yytext); 

     for(i = 0; i<len; i++) 

     { 

      buff = yytext / [i]; 

      if(buff <= 122 && buff > = 97) 

      else 

      { buff = buff + 32; 

        yytext[i] = buff; 

      } 

     } 

     break; 

     case 2 : 

      for(i = 0; i < len; i++) 

      { 

       buff = yytext [i]; 

       if (buff < = 90 && buff > = 65) 

       else 

       { buff = buff – 32; 

       yytext[i] = buff; 

       } 

      } 

     break; 

     case 3 : 

       buff = yytext(0); 

       if(buff <= 122 && buff > = 97) 

       { 

       buff = buff – 32; 

       yytext[0] = buff 

       } 
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       break; 

    }      

    printf(“%S”, yytext); 

 

%%  

int main(int argc char **argv) 

{ 

 FILE *file;  

           if(argc > 1) 

 { file = fopen(argv [1], “r”) 

  printf(“1.Lower, 2.Upper, 3.Title”);  

  scanf(“%d”, &case) 

  yyin = file;  

  yylex( );  

 } 

 return(0); 

         } 

Program 4 : Lexical Analyzer 

 %{ # include <stdio.h> 

%} 

LET [a-z A-Z] 

DEG [0-9] 

%% 

[ \t]+ ; 

int/float/char/if/else/do/while/break/continue/double/signed/unsigned/long/for/switch      {  

      printf(“Keyword Found; %s”, yytext)    } 

main”(“”)”/exit/getch”(“”)”  { printf(“Function is Found %s”, yytext)    } 

{LET}[{LET} {DEG}]*  { printf(“Identifier found : %s”, yytext);     } 

%[sdf]     { printf(“For mat symbol of identifier : %s yytext”); } 

{DIG}+     {  printf(“Constant is %s”, yytext);    } 

“/”. “//”     {  printf(“Commentt : %s”, yytext);     } 

“{” / “}” / “(” / “)” / “[” / “]” / “;” / “,” { printf(“Delimiters : %s”, yytext);    } 

“+” / “–” / “/” / “”    {  printf (“opertor : %s”, yytext);    } 

“ =”      {  printf(“Assignment operator : %s”, yytext);   } 

“<” / “>” / “< =” / “> =” / “= =”  {  printf (“Relational operator : % S”, yytext);  } 

 

%% 

main(int argc, char  argv) 

 if(argc > 1) 

{ 

 FILE *fp; 

 fp = fopen (argv[1], “r”); 

 if (!fp) 

  { printf(“file error”); } 
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 yyin = fp;  

 yylex( ); 

} 

2.8 Finite Automata : 

 In compilation of regular expression it constructs generalized transition diagram called 

finite automaton. A finite automaton can be deterministic or non-deterministic. 

 “Non-Deterministic Finite Automaton” have more than one transition out of state may 

be possible or the same input symbol. 

 Both finite automata accepts a sequence of input characters and performs a sequence of 

action if the input string is a valid sentence in the language. 

  Thus both can recognize exactly what regular expressions can denote. However, there is 

a time space trade off; while deterministic finite automata can lead to faster recognizers 

than non-deterministic automata. 

 Regular Expressions can be converted in to DFA ( Deterministic Finite Automata ) and 

NFA ( Non-deterministic Finite Automata ) by using algorithms .   

 First let us see conversion of regular expression into a non-deterministic automation. 

 For example, regular expression (a/b)*abb consisting of the set of all strings of a’s and 

b’s ending in abb. 

2.8.1 Non-deterministic Finite Automata : 

 NFA consist of 

 1. a set of states S 

 2. a set of input symbols  

 3. a transition function between states  

 4. a state So that is distinguished as the starting  state 

 5. a subset of set  of states F distinguished as accepting final states. 

 An NFA can be represented diagrammatically by a labeled directed graph, called a 

transition graph, in which the nodes are the state and the labeled edges represent the 

transition function. This graph looks like a transition diagram, but the same character 

can label two or more transitions out of one state. For (a/b)*abb.a transition graph is 

shown in Fig. 2.8.1. 

 

    Fig. 2.8.1 

In above NFA, transition graph : 

1. {0, 1, 2, 3} are set of states. 
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2. {a, b} are input symbol. 

3. This transition function can be implementing transition table that is a row for each state 

and column for each input symbol and a transition table for the NFA of Fig. 2.8.1 is 

shown in Fig. 2.8.2. 

State a B 

0 {0, 1} {0} 

1 -- {2} 

2 -- {3} 

3 -- -- 

Fig. 2.8.2 : Input symbol 
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 An NFA accepts an input string y if and only if there is some path in the transition graph 

from start state to accepting state. 

2.8.2 DFA  ( Deterministic Finite Automata) : 

1. No state has an  transitions. 

2. For each state S and input symbol ‘a’ there is at most one edge labeled as ‘a’ coming out 

of  S. 

 When DFA represented by transition diagram all outgoing edges are labeled with 

an input character and no two edges leaving a given state have the same input 

symbol. 

 We can use transition table to represent transition diagram like NFA. 

 Each entry in transition table has only single state. If the string is valid according to 

language of finite automata there exists unique path from starting state to final state 

of Automata for that string. Therefore it is very easy to decide whether given input 

string is valid or not I in Deterministic Finite Automata than that of Non-

deterministic finite automata . 

  In Fig. 2.8.3 we have seen NFA for (a/b)*abb, lets see a transition diagram of DFA 

for the same regular expression. 

 

Fig. 2.8.3 

 In NFA, it has two transitions from state 0 on input ‘a’ that is it may go to state 0 to 

1. But in DFA there is one state 1 which have transition on symbol ‘a’. 

 NFA can have many more states than the equivalent DFA and it is difficult to 

decide which path to follow in the NFA. Because there can be more than one output 

state for same input character and current state which makes it difficult to do decide 

which state should be selected as next state. 

 In case of NFA to decide that a particular string is not accepted by NFA we have to 

ensure that none of all possible paths from starting state can reach to final state of 

NFA for the given string. 

Comment [a6]: number 
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 Thus to summarise 

o NFAs are easy to obtain from RE 

o NFAs are costlier programs than DFA (as NFA may have more states than 

that of its equivalent minimized DFA) 

o DFAs can easily and quickly decide whether given string is valid or not 

according to language. 

o Therefore RE are converted to NFA which are then converted to their 

equivalent minimized DFA. 

o Note: For every conversion  an algorithm  is used.  

2.8.3 Construction of an NFA from Regular Expression : 

 “Thompson’s construction” is an algorithm used to construct as NFA from a regular 

expression. The algorithm uses the syntactic structure of the regular expression in to 

guide the construction process. Here, important think is how to construct automata for 

expression containing an alternation, concatenation or Kleene closure operator. 

e.g.  (1) Alternation (R/S) 

  (2) Concatenation (R)S 

  (3) Kleen’s closure R 

 The construction of NFA using Thompson’s algorithm for above regular representations 

are introduces at most two new states, so whatever NFA constructed for a regular 

expression has at most twice as many states as there are symbols and operator is the 

regular expression. 

Thompson’s construction algorithm : 

 Input : A regular expression R 

 Output : An NFA accepting L(R) 

 Method : First breaks R into its construction sub expressions. Then construct NFA for 

each basic symbol r. By the syntactic structure of the regular expressions x, we combine 

these NFA inductively and obtain the NFA for the entire expression. 

 NFA has exactly one start state, no edge enter to it, and no edge leaves the final state. 

 To construct NFA for each symbol rules : 

 (1) For , construct the NFA : 

 

Corel 9 

 (2) For symbol ‘a’ of regular expression, the NFA : 

 

Corel 10 

 (3) For alternation (R)/(S), the NFA for regular expression R and S : 

 

Corel 11 

 

Comment [a7]: letters in circle should be 

capitalA,B 

Comment [a8]: Letters in circle should be capital 

as A,B 
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 Here there is transition on E from a to one start of R and S. And transition on E to 

accepting state. This two state are not start or accepting states of N(R/S). 

 (4) For (R)  (S) Concatenation : 

Corel 12 

 Here R becomes the start state of composite NFA an accepting state of S becomes 

accepting state of the NFA. 

(2) For R*, Kleen’s closure : 

Corel 13 

 New start and accepting state a and b. In the NFA, we can travel from a to b directly 

along with transition of , which representing R* zero occurrence of R, we can go a to b 

with R number of times. 

In constructing each state, note that we construct new state that has unique name. Also 

some important properties like : 

(1) No two states of any component NFA can have the same name. 

(2) NFA for any R has exactly one start state and one accepting state. 

(3) N(R) has at most twice as may states as the number of symbol and operation in R. 

(4) Each state of the NFA for a regular expression R has either one outgoing transition on 

symbol or at most two outgoing E transitions. 
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Ex: R=(a/b)* can be converted into epsilon NFA as 

Corel 14 

 

2.8.4 Conversion of NFA to DFA : 

(1) Find  – Closure of each state of NFA. Now Epsilon transition is as 

         

 A                                B 

 

  means empty, thus machine enters state A, it also goes to state B on empty on null 

input i.e. A and B can be considered as one state. 

(2) Identify a group of NFA states to represent the initial state of the DFA. Let us call this 

state S of DFA, which is the grouping of states {Si} of the NFA. 

(3) Identify a group of NFA states; which can be reached from same Si along a transition 

marked say ‘a’. 
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(4) Repeat above steps until we reach the stage when no new states can be added to the 

DFA. 

 For above example. 

(5)  – closure (0)  {1, 2, 4, 7} = A 

   (A, a) = {3, 6, 7, 1, 2, 4} = B 

   (A, b) = {5, 6, 7, 1, 2, 4} = C 

   (B, a) = {3, 6, 7, 1, 2, 4} = B 

   (B, b) = {5, 6, 7, 1, 2, 4} = C 

   (C, a) = {3, 6, 7, 1, 2, 4} = B 

   (C, b) = {5, 6, 7, 1, 2, 4} = C 

(6) Starting state of NFA is state 0 and it’s -closure i.e. {1, 2, 4, 7} because on  

 symbol from 0 next state transition next states are 2 and 4 and collectively its token state A of 

DFA. 

(7) From this state A on ‘a’ input symbol transition to state 3, now E closure of 3 is 6, 1, 2, 

4, 7. Thus 1, 2, 4, 6, 7 are collectively new state B of DFA. 

(8) Similarly {5, 6, 7, 1, 2, 4} from C of DFA of ‘A’ on after this B on ‘a’ and B on ‘b’, C 

on ‘a’ and C on ‘b’ not generated new states i.e. DFA table is prepared is as follows : 

State Input 

a b 

A B C 

B B C 

C B C 

Next step is to minimize this DFA. 

 Find the equivalent states and keep it is one group. The remove one of that and replace 

over its equivalent state. 

 With respect to example and its DFA table B, C are state which is equivalent i.e. its get 

remove from table and replace by A as no state is remaining for transitions. 

State Input 

a b 

A A A 

Therefore DFA is as follows : 

Corel 15 

Example 2.8.1 : Consider following Epsilon NFA for Regular Expression (a/b)*a(a/b) 
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 E closure on 0 = {1, 2, 3, 7} = A 

 (A, a) = {4, 6, 7, 1, 2, 3, 8, 9, 11}    (A, b) = {5, 6, 7, 1, 2, 3} 

    = B         = C 

 (B, a) = {4, 6, 7, 1, 2, 3, 8, 9, 10, 11, 13}  (B, b) = {5, 6, 7, 1, 2, 3, 12, 13} 

    = D        = E 

 (C, a)  = {4, 6, 7, 1, 2, 3, 8, 9, 11}   (C, b) = {5, 6, 7, 8, 1, 2, 3, 9, 11} 

    = B        = F 

 (D, a) = {4, 6, 7, 1, 2, 3, 8, 11, 9, 10, 13}  (D, b) = {5, 6, 7, 1, 2, 3, 12, 13} 

    = D        = E 

 (E, a) = {4, 6, 7, 9, 8, 1, 2, 3, 11}   (E, b) = {5, 6, 7, 1, 2, 3} 

    = B        = C 

 (F, a)  = {4, 5, 7, 1, 2, 3, 8, 9, 11, 10, 13}  (F, b) = {5, 6, 7, 1, 2, 3, 12, 13} 

     = D        = E 

 

 a b  

A B C (AE) (BD) (C) (F) 

(A) (B) (C) (F) B D E 

C B F  

D D E  

E B C After reducing 

F D E  

  

 a b 

A F A 

C F F 

F F A 
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Examples : 

(3) (a/b)* abb (a/b)* 

(4) (a*/b*)* 

(5) (a*ba/aba*) 

(6) ((a+(b/c)*)*+(a+b*)*)* 

2.9 Role of the Finite Automata in the Compiler : 

Consider example given for the regular expression of identifier. 

 Now regular expressions are used as token describer in lexical Analyzer compiler. 

 Lexical Analyzer has to perform major task of Token Identification from the input 

source program. To identify  token lexical analyzer needs token identifier.  

 Now as regular expression can be converted into finite automata by using algorithm we 

can obtain finite automata working as token identifier  from regular expression which is 

token describer. 

 Thus finite automata play an important role in lexical analyzer. 

 The regular expression can be converted into e-NFA which can be converted into DFA 

which can be again minimized. This minimized DFA can be used as Token Recognizer 

in Lexical analyzer. 

 Finite Automata is minimized to produce shorter program 

 Illustrate RE and FA for identifiers.

 

 Review Questions  

Q. 1 What are the advantages of separating lexical analysis form syntax analysis ?  

Q. 2 Write a short note on LEX.  

Q. 3 Assuming suitable data structure for representing finite automation, write an algorithm 

(in pseudo ‘C’) for converting a NFA to its equivalent DFA. 

Q. 4 State the importance of lookahead in lexical analysis. 

Q. 5 Explain the importance of ordering the lexical rules. 

Q. 6 In Lex notation, give regular expression to recognize ‘C’ comments. 

2.10 University Questions and Answers : 

May 2004 – Total Marks 8 

Q. 1 Discuss the role of finite automata in compiler. (Section 2.9) (8 Marks) 

 Dec  2004 – Total Marks 16 

Q. 2 Write a Lex rule for “ An identifier that starts and ends with digit and maximum length 

of 20 characters.  (Section 2.7.1) (6 Marks) 
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Q. 3 State what strategy Lex should adopt if keywords are not reserved words.  

(Section 2.7.2)    (4 Marks) 

Q. 4 Write a short note on input buffer with lexical anlyzer. (Section 2.3) (6 Marks) 

 




